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Abstract. An energy decay rate is obtained for solutions of wave

type equations in a bounded region in VP whose boundary consists partly of

a nontrapping reflecting surface and partly of an energy absorbing surface.

Unlike most previous results on this problem, the results presented here

are valid for regions having connected boundaries.

Key-iwords. Wave equations, boundary stabilization, exponential

stability.

Let f0 be a bounded, open .connected set in n (n 2) and F denote its

boundary. Assume that r is piecewise smooth and consists of two parts, F0

and F1. with FI X and relatively open in F. and F0 either empty or having a

non-empty interior. We set 1 -F -x(O.) I=r x(O,-). Let k be an L (F)

function satisfying k(x) O almost everywhere on r 1 Consider the problem

(1) w' '- Aw in flx(O,-),

(2) w/v = -kw' on 1I, w 0 on 0'

0 1
(3) w(O) = w . w'(O) = w in f

where '=d/dt and v is the unit normal of F pointing towards the exterior of

Associated with each solution of (1.1) is its total eneryv at time t:

E(t) = I f" (w + Ivw 2 )dx.

A simple calculation shows that

E'(t) -r kw' 2 dr 0.
1

hence E(t) is nonincreasing. The question of interest for us is the

following: Under what conditions is it true that there is an exponential

decay rate for E(t). I.e..

(4) E(t) Ce- 1AtE(o), ,tQ0

for some positive w.

The first person to establish (4) for solutions of (l)-(3) was C.

I
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Chen [1]. under the following assumptions: k(x) ko>O on r1 . and there is

a point x0  such that

(5) (X-,O)-v 0. xero ,

(6) (x--xO).V I > O, xer I .

Chen slightly relaxed (5) and (6) in a later paper [2]. The most general

result to date in terms of the assumed geometrical conditions on r appears

in [5]. There it is proved that (4) is valid provided there exists a vector

field h(x)=[h 1 (x),.*".hn()]CC
2 (") such that

(7) hv 0 on ro,

(8) h-v i > 0 on F.

(9) the matrix (6hi/Ox + 6h/8lxi) is positive definite on Q.

This last result has subsequently been reproved by Lasiecka-Triggiani [7]

and Triggiani [9] using methods different from those in [5]. In all of the

W

papers cited, the estimate (4) was obtained from estimates on f E(t)dt by
0

employing a result of Iatko [3] (later extended by Pazy [8]). Thus in all

cases the constants C and w are not given explicitly in terms of problem

data.

An important observation is that when r is smooth, the conditions (5)

and (6) (resp.. (7) and (8)) together force rf l-. Thus if rOQ$, the

above results cannot apply to regions ( having a connected boundary.

However, in a recent paper [4]. Kormornik and Zuazua succeeded in relaxing

condition (6) of Chen to

(10) (x--x 0 )-v 0 on r

thus allowing for regions with smooth connected boundaries, but at the

expense of replacing the boundary condition (2a) by

S(1) aw/v = -.((x--XO).v)w' on I1.



In addition, the proof in [4] gives explicit estimates of the constants C

and w In (4) In terms of the geometry of 0. more specifically. In terms of

the constants p0 and p, which appear in (16). (17) below.

The purpose of this paper is to extend the result of [4] in two ways:

first, by replacing the specific vector field x-ic0 in (5) and (10) by a

general vector field h(x) satisfying (7). (9). and

(12) h'v 0 on FI .

and, second, by replacing the boundary condition (11) by

(13) Ow/fv = -k (hv)w'  on I

where kEL'(F1 ) satisfies k
9* ko>O on Fl. Note that if h-v ,r>O on F1 . the

boundary condition (2a) may be written as (13) with k*=k/(h-v). Hence, in

'this situation, we recover (a sharpened form of) the main result of [5]

(see Theorem below). Also, as in [4]. we will obtain explicit estimates on

the constants C and w in (4) in terms on constants associated with the

geometry of Q. the gain k and the vector field h.

The formal statements of the two results to be proved are as follows.

THEOREM. Let w be a regular solution to (1). (2b) and (13). Then there is a

constant w (which may be explicitly estimated) such that

f E(s)ds (I/w)E(O),
0

f E(s)ds e")tf E(s)ds, to.
t 0

COROLLARY. Under the hypotheses of the Theorem,

E(t) e-e"--(tE(O), till .

Remark 1. If the initial data (3) satisfies w0 H1(), wI EL2 (), w on F0

it is well known that (1)-(3) has a unique weak solution such that

(w~w')4C([O.);HI(Q)xL 2 (0)), w--O on i0 In the sense of traces, and

kl/2 w'L2(O.T;L2 ( 1)). for every TO. The proof of Theorem requires

. , 1.- ,



additional regularity of w. namely (w.w')eC([O.);H2 (Q)xHl(l)). When

1' O:I'#. this latter requirement may not be satisfied even for smooth data

and boundary since singularities may develop at points on rrT I . On the

other hand. when r 0 rI=# the solution will always possess the necessary

regularity if w0 CH2(). wlEHl(f). w--O on rO , aw0 /v+kw 0-- on Jr .

Remark 2. The Theorem and Corollary may be extended to generalized wave

equations with time independent coefficients as in [5] but under the weaker

condition (12) and also to linear elastodynamic systems (cf. p. 167 of [5]

and also [6]). We omit details.

Proof of Corollary. Since E(t) is nonincreasing. for every T>O

TE(t+T) f E(s)ds (l/w)e -Wt E(0),

• t

or

(14) E(t+T) (e W /Wrr)e " °( ( t+ T )E (0 ) ,  T>0.

The first factor on the right has its minimum at T=I/ and for this value

Of T (14) becomes
%E(t+l/ ) e e" (t+l/()E(O), tQ0.

Proof of Theorem. We assume that roO. The argument may easily be modified

to handle the opposite case as in [5] or [9].

Define the matrix H=(oht 1 xj + 8h /ax By assumption we have

(15) HE.E h0 1i 2 .  FEFn. xE T. h0>O.

Since multiplication of h by a positive constant leaves F0 and F1

invariant. we may (and do) assume that ho=1 in (15).

Define constants p0 and plI by

(16) fv2dx < f 12dx

(17) fo v2dx if v1 2dx

for all vH 1(f0) such that v=O on 10  For >0 and fixed, define

• .4
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F~t =E(t) + ep(t)

where

p(t) = 2(w'.bvw) + ((h J-jl)w.w').

We note that

hence

(18) (l-efC 0)E(t) F,(t) (l+e-C0 )E(t)

where C0 depends on h and p1 . We will show that for & sufficiently small.

(19) Fe(t) -efE(t) + Q-f,, w2 dx

where C depends on h. poandpI

One has

(20) p'(t) = 2(w.h-vw) + 2(w'.h-vw') + ((hj -1)w'.w) +

From (1), (2) we have

(21) (w'.v) + (vw.vv) + b(w'.v) - f. (ow/av)vdF =0

0

for every vCH I(Dl), where

b(w'.v) =f. k (h-v)w'vd.
F 1

We use (21) to calculate (w''h-vw) and ((h. j.-)w.w) in (20). One has

(22) (w'',h-vw) = -(vw.v(h-vw)) - b(w',h-vw) + fr. (aw/av)h-vwdF.

* A direct calculation gives

(23) (vw.v(h-vw)) f 0 h 1 i ~w iw dx - (1/2)f Q h~ MIvwI 2 dx +

(1/2)fr h-vlvwI dF-.

Similarly,

(24) ((h -l )w.w) 411f (h l-)IvwI12 dx f hdi w x

b(w'.hii-~)

We also have

* 5



(25) (w'.h-vw') = (1/2)r (hv)w' 2 dF(i/2)fn h Jjw'2 dx.

Use of (22) - (25) In (20) gives

(26) P*(t) =-2ffh -w w idx + f,, Ivwl2cix -. w' 2 dx-

4- ~J-ij wAw I x r (h-v) IVwI2 d +2f, (8' /av)h-vwdTr +

*The integrals over F ,viz.

(27) 2fJy0(a/au)h-vwdr - f F. h- IVw 12 d' f 1- h-v(8w/av)2dT 0.

We also have the estimates

(28) Ib(w.h-vw)I = If I k *(h-v)w'(h-vw)dFI

f I1 h- vjVw12 dF + CifI hvw2dr

(29) lb(w' .(h Jj 1)w)I C,/(26)fr I (h-v)w' 2 dr + (62)f, Ivwl2 dx.

(30) Iff, h iwwidxI C3 /(26)f1 . w cix + (6/2)upfvId

where C,. C2 depend on h and k. C3 on h and where 6>0 will be chosen

below. Use of (27) - (30) and (15) ( recall that h 0=1) in (26) yields

p,(t) 40~ (w,2+ IvwI2)dx + (62)(w 0+p1)fp IvwI 2d +

d(C 1+C2 /(26) + I)fr. (h-v)w' 2 d1 + C3/(26) fr w 2dx.

Choosing 6 =1/(pi0+AL) we obtain
S0

(31) p'(t) -E(t) + C4 fr (h-v)w' 2 d + C fQ w 2dx

where C4 C+C 2/(26)+l. C -_C /(26). Since k* k 0O on F1  eoti rm(1

F(t) =E'(t) + ep'(t)

k " (h-v)w' 2dF +Ep' (t)

- f-E(t) + eC 5f Q 2 d + fi-' (-C 4 -k)(h-v)w 2 dP

--*tE(t) + cC 5 fQ0  2 d

provided eC4 k0 . This establishes (19).



Let P>0 and consider

(32) I e-0(s-t)F.(s)ds = -F (t) + Pf e-P(s-t)F(s)d s
t &&t f

-f e-(s-t)E(s)ds + C5f e - ((s - t ) Iw(.,s) 12ds.

t t

From (18). Fe(s) O provided eC0 1. From Theorem 2 of [5]. we have the

estinte

(33) f e - ( s - t) jw(.,s)12ds C*E(t) + mf e-P(t-S)E(s)ds
t t

where >O is arbitrary and C is a constant independent of f3. Therefore

(32). (33) imply

(34) Ef e-OEs-t)r(s)ds 9 F (t) + C5[C*E(t) + nf e- Ps-t)E(s)ds]
t t

where e--min(1/Co.ko/C4). Choosing Trl/qC5 (q>l) in (34) gives the estimate

(35) ( f-)e f e-'(s-t)E(s)ds F (t) + EC5C1/qE(t) (l+CKq)E(t)
q t

where K -Co+ C C does not depend on ft. Define w =(q-l)e/q(l+EKq) and
q0 CO l/q q q

let 0-40 in (35) to obtain

(36) f E(s)ds (1/w q)E(t), tQO, q)1.

tq

The conclusions of the Theorem with cj2=e/2(1+eK 2 ) (for example) follow

easily from (36).
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